Perceptual Optimization of American Sign Language: Evidence from a Lexical Corpus

Matthew Dye1,2, Andreas Savakis1, Bruno Artacho1, Aman Arora1, Naomi Caselli3, Erin Finton3 & Corrine Occhino1,2
Rochester Institute of Technology1, National Technical Institute for the Deaf2, Boston University3

Background

- Skilled signers fixate on the face of signers \cite{1-3} but signers’ hands tend to move in the inferior peripheral visual field \cite{4-7}
- Therefore hand movement must be perceived using peripheral vision where there is less acuity
- Researchers have proposed that the structure of sign languages evolves to accommodate these visual constraints \cite{8-10}
- However, whether sign language structure reflects perceptual limitations has yet to be empirically tested
- We combine a lexical database (ASL-LEX) with computational methods that automatically extract wrist location data

Methods

- ASL-LEX 2.0 database of 2,500 lexical signs \cite{11}
- Utilized OpenPose 10 “deep learning” to perform pose estimation to track the motion of joints over time and analyze wrist location of 2,390 signs
- Videos were normalized across signers by:
 - Controlling for the distance between neck & hips
 - Centering the nose “joint”
- Wrist location data passed through median filter (removes outliers) and Kalman filter (trajectory smoothing)
- ASL-LEX phonological coding determined marked vs unmarked (B,A,S,1,C,O,5) handshape \cite{12}

Discussion

- Findings support previous claims about structure of ASL lexicon
- We show that databases/corpus-based models can be used in conjunction with new technologies to test previously postulated theoretical predictions
- Markedness, however, is not well understood and may not be the best diagnostic for measuring visual acuity pressures
- More research is needed to understand the interaction of competing pressure of perception and production
- In future work we extend these techniques to Nicaraguan Sign Language to test how visual pressures shape language evolution

Question 1: Can we use OpenPose software to estimate wrist position in ASL videos?

Answer 1: Pose estimation accurately evaluated wrist position by comparing locations of the wrist to hand-tagged major location

Question 2: Are signs that require fine-grained phonological distinctions more likely to appear in the central visual field (CVF) than the inferior (peripheral) visual field?

Answer 2: Signs with marked handshapes were more likely to be articulated in the CVF than in the peripheral field