

Measuring phonological complexity in sign languages

Justine Mertz^{1,2}, Valentina Aristodemo¹, Chiara Annucci¹, Carlo Geraci², Beatrice Giustolisi³, Doriane Gras¹, and Caterina Donati¹

¹LLF U. Paris, CNRS - ²IJN ENS, CNRS - ³U. Milano-Bicocca

The Sign-Hub project

Short-term / Scientific goal: assess the impact of

Introduction

Assessing phonology: the production test in LSF and LIS.

Setting the baselines:

- Native signers are a minority among signers
- Most Deaf people get to SL late or very late

Factors:

- The frequency of each sign
- The phonological complexity of each sign, but:
- No phonological description

delayed language exposure.

Long-term / Application: provide a basis for clinical assessment.

Battery of tests: lexical and syntactic tests.

Methodology:

- **Target signs:** non iconic, non transparent
- Validation: 20 hearing non-signers, exclusion if guessing >2 - LSF: 112 signs, 4 excluded
 - LIS: 103 signs, 9 excluded

→ 3 Deaf populations per SL

- exposed exposed (4yo-8yo) (9yo-13yo)
- No information on acquisition pattern or order
- No recognition into speech/sign errors or other recognizable facts

Challenge: how to measure phonological complexity of signs without any knowledge of the phonology of the SL?

Non-linquistic	mogeuro		
Repetition task for non-sig	sk for non-signers (video-recorded)		1. Presentation or video (no acce the meaning)
Materials:			
LSF:	LIS:		
108 signs	- 94 signs		
20 hearing non-signers	- 17 hearing non-sig	ners	

Coding:

- ▶ 2 interns with basic competence in LSF/LIS + 2 SL researchers
- Fluency + Accuracy (Handshape (HS), Location (Loc), Orientation (Or), Movement (Mov))

Scoring:

- Binary value for each component (correct = 1; wrong = 0)
- Overall accuracy: sum of the accuracy value for each component

	WINDOW
Fluency	1
HS	0
Loc	1
Or	1
Mov	1
TOTAL	4 / 5

Linguistic measure

Complexity scale: adapting the *Prosodic Model* (Brentari 1998)

Materials:

- LSF: 50 items annotated (/108), 3 excluded
- LIS: 30 items annotated (/94), 3 excluded

Coding:

Tree structure for each sign

200

Scoring:

Easiest:

MATCH (14)

• Level of complexity: number of nodes and positively specified features

MOM (20)

- Lower values = less complex; higher values = more complex signs
- Degree of accuracy mapped onto a complexity scale (5 = least complex, 0 = most complex)

Total set of nodes and features: 116 (HS = 67, Loc = 22, Mov = 27)

Most complex:

PEN (38)

PENCIL SHARPENER (34)

Correlation between data-driven & theory-driven complexity scores

Repeated **better**

than predicted

by the model.

Data-driven

Theory-driven

HS: 0.8/1

HS: 21/25

Discussion

Some clear divergences in HS: cases where the predictions of the phonological model did not fit what was observed in the non-linguistic performance.

by the model. Data-driven HS: 0.15/1 Theory-driven HS: 15/25

by the model. Data-driven HS: 0.05/1 Theory-driven HS: 18/25

COMPASS

Possible sources of mismatch:

- 1. Perceptual salience
- 2. Mismatch with gestural repertoire: [stacked]

SAUCE

- 1. Inhibition of movement
- 2. Different HS between the two hands
- 3. HS change not intuitive
- Mismatch: [stacked]
- 1. No inhibition of movement

METER

- 2. H2 open hand not complex
- 3. Activation of some iconic meaning

Conclusion

- LSF & LIS: HS is the most complex parameter and predicts complexity in a non-linguistic repetition task.
- LIS: Mov is also a factor of sign complexity.
 - → Signs complexity might be due to only one parameter at a time.
- The non-linguistic measure is partially predicted by the phonological model.
 - → This suggests a partial overlap between the phonology of signs and articulatory constraints applying on gestures.

Reference

Brentari, D. (1998). A prosodic model of sign language phonology. Mit Press.

Acknowledgments

Laurène Loctin, Deaf consultant

Valérie Guyot, Deaf consultant

Giuseppina Turco, PhD

orizon 2020 European European Union funding Commission for Research & Innovation

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 693349.

further information about the project For please visit our website at <u>www.sign-hub.eu</u>