

Encoding spatial information in two sign languages: A Comparison of Ghanaian (GSL) and Adamorobe (AdaSL) Sign Languages

Mary Edward¹ and Pamela Perniss² ¹ University of Brighton (UK) ² University of Cologne (Germany)

Visual Spatial Language

- The visual encoding of spatial information in signed languages
 - Use of space, hands and body
 - High potential for iconic representation visual-spatial expression of visual-spatial information
- Affordances of the modality bring about high degree of similarity between sign languages in the spatial domain (Aronoff et al. 2003; Meier 2002)
 - System of classifier predicates (depicting verbs, Liddell 2003)
 - Simultaneity of expression

Visual Spatial Language

- However, also differences between sign languages in the spatial domain
 - e.g. lack of entity classifier predicates in Adamorobe Sign Language (AdaSL) (Nyst 2007)
- Various factors may contribute to differences in spatial domain
 - Contact with surrounding spoken language (e.g. AdaSL contact with Akan, Nyst 2007)
 - Age of sign languages (Senghas et al. 2004)
 - Make-up of signing community (e.g. urban vs. rural) (De Vos & Pfau 2015)
 - Language-specific structures (Perniss et al. 2015)

Present Study

- Compare the encoding of information about location, motion and action in two sign languages used in Ghana
 - Ghanaian Sign Language (GSL)
 - Adamorobe Sign Language (AdaSL)

Language information

Ghanaian Sign Language (GSL)

- Urban sign language
- Used by Deaf community in Ghana
- Developed after establishment of first schools for the deaf in 1957 (Kiyaga & Moores 2003)
- Estimated 110,625 Deaf people in Ghana (0.4% of population) (Ghana Nat. Assoc. of the Deaf, 2018)
- Language of instruction in Deaf schools

Adamorobe Sign Language (AdaSL)

- Rural sign language
- Used by both deaf and hearing signers in Adamorobe village
- Emerged in the 18th century (Okyere & Addo 1994)
- 40 Deaf people in the village (1.3% of current population of 3000) (down from 2% of a population of 2400, Nyst 2007)
- Older AdaSL signers uneducated; younger AdaSL signers educated in GSL at Deaf schools

Why GSL and AdaSL?

- Very little research on GSL to date
 - Handful of BA/MA theses on phonology, morphology and numeral incorporation
- Typological exceptions in the spatial domain have been described for AdaSL (Nyst 2007)
 - Absence of entity classifier predicates
 - Restriction to real-size spatial projections

Why GSL and AdaSL?

- Since the earlier research on AdaSL, there has been a considerable amount of language contact between GSL and AdaSL
 - Younger Deaf Adamorobeans are being educated in GSL in urban Deaf schools
 - Church services in Adamorobe village used to be interpreted from GSL to AdaSL
 - Now only in GSL due to death of GSL-AdaSL interpreter
 - AdaSL signers exposed to GSL through increased community outreach programs
 - Social pressures to adopt a more widely used sign language (i.e. GSL)

Data Collection

- Signers of GSL and AdaSL watched the *Pear Story* video (Chafe 1980)
 - Full video divided into six parts (approx. 1 minute each) to facilitate retelling, minimising information loss due to memory limitations
- Signers retold the story in their sign language
- Participants
 - GSL signers (N=10)
 - AdaSL signers (N=10)
 - 8 AdaSL signers non-educated
 - 2 AdaSL signers educated and bilingual in AdaSL and GSL

Coding

- Scene by scene coding to allow direct comparison of event encoding between the two sign languages
 - Total of 112 scenes identified in *Pear Story* video and categorised as Location (14), Action (54) or Motion (44) scenes
- GSL and AdaSL signing coded for
 - Predicate type, e.g.
 - Classifier (handling, entity)
 - Directional (e.g. go, come)
 - Manner verb (e.g. *walk, run*)
 - Motion verb (e.g. *meet, descend*)
 - Action verb (e.g. pick, give)
 - Bimanual simultaneous constructions
 - Serial verbs constructions for event depiction (Nyst 2007)

Analysis

- Expression of location, action and motion events
 - Location: static location of referents
 - Action: agentive transitive action (e.g. picking pear, carrying basket, giving hat to boy)
 - Motion: intransitive path motion (e.g. walking, running, riding bicycle)
- Analysed only events/scenes that were encoded by at least 5 signers (half) in each language
 - 0 Location scenes (0/14=0%)
 - 22 Action scenes (22/54=41%)
 - 16 Motion scenes (16/44=36%)

Predicate types in ACTION events

Predicate types in MOTION events

Encoding Motion with Entity classifiers

RH: CL_E (boy) LH: CL_E (girl)

RH: CL_E (boy) LH: CL_E (girl)

RH: CL_E (boy) LH: CL_E (girl)

GSL

RH: CL_E (boy) LH: CL_E (girl) GSL

Simultaneous constructions

- Preliminary analysis of the use of bimanual simultaneous constructions in the motion and action event analysed
- Bimanual simultaneous constructions occurred in

	Action events	Motion events
GSL	19%	11%
AdaSL	11%	6%

Types of Simultaneous constructions (in data subset)

MOTION events

Hand1	Hand2	GSL	AdaSL	Example
Entity CL	Entity CL	~	~	boy and girl riding toward each other
Entity CL	Handling CL	~	✓ (1x)	man moving while dragging goat
Subject ref.	predicate	×	× .	GIRL + ride bicycle
Directional	manner predicate	~	~	GO + ride bicycle
Directional	Handling CL	Х	-	man goes while dragging goat
Limb CL	Handling CL	X	✓ (1x)	limping while pushing bicycle

ACTION events

Hand1	Hand2	GSL	AdaSL	Example
Handling CL	Ground obj.	×	× .	put pear in basket
Handling CL	Handling CL	~	~	holding pear while taking bandana off neck
Handling CL	Lex. sign	~	×	pick pear + AGAIN
Handling CL	Index (to ref.)	×	~	give pear to boy (there)
Handling CL	numeral (number ref.)	~	X	give three pears
Handling CL	Entity CL	~	X	boy eating pear

Examples of SC depicting Motion

AdaSL

RH: GO LH:CL_H(hold bicycle)

GSL

RH: CL_E (man, two-legged CL) LH: CL_H (drags animal)

RH: CLL (limb) LH: CLн (hold bicycle)

GSL

RH: CL_{E} (boy, two-legged CL) ₁₆ LH: CL_{H} (hold bicycle)

Examples of SC depicting Action

RH: CL_E (play tennis) LH: CL_H (eat/hold fruit)

RH: CL_H (hold fruit) LH: CL_H (play tennis) GSL

AdaSL

RH: MAN LH: CL_{H} (hold pear)

RH: CLH (eat) LH: CL_E (boy)

Serial verb constructions (SVCs) (in data subset)

Types of SVCs encoding Motion events (in data subset)

Summary and discussion

- GSL and AdaSL signers used similar strategies overall to express Motion and Action information
 - Action: Mostly handling handshapes (with or without path of object)
 - Motion: Manner verbs and directionals used substantially in both languages
- GSL signers used entity classifiers with path for encoding motion to considerable degree
 - Also occurred in AdaSL motion encoding!
- Higher preference for directional verbs for motion encoding in AdaSL signers compared to GSL signers
- Simultaneous constructions of various types used by signers of both languages
 - About twice as often by GSL signers but also considerable use by AdaSL signers!
- Serial verb constructions used by signers of both languages to similar extent for action and motion encoding
 - Manner verb plus directional used by both but particularly common for AdaSL (Nyst 2007)
 - Manner verb OR directional plus entity classifiers used in GSL

Effects of GSL-AdaSL language contact?

Entity classifier use in AdaSL

- Nyst (2007) found no use of entity classifiers for motion encoding in AdaSL and no use of reduced-sized event space representation (observer perpective)
 - We found use of entity classifiers in AdaSL for depicting motion of referents
 - Especially for motion seen from a distance (e.g. walking and riding bicycle across field) – less of a reduced-sized event space representation
- 6 out of 10 AdaSL signers used entity classifiers
 - Interestingly, the two GSL-educated (bilingual GSL-AdaSL) signers did not use entity classifiers
 - The two educated signers also did not use any GSL signs (borrowings) in their narrations, in contrast to all other AdaSL signers

Effects of GSL-AdaSL language contact?

Use of simultaneous constructions in AdaSL

- Nyst (2007a,b) found very little use of simultaneous constructions in AdaSL, and of restricted type
 - We found considerable use of simultaneous constructions and of a wide variety of different types in our subset of data, similar to use of SCs in GSL
- Or due to different types of data analysed, and different nature of stimulus videos?
 - Nyst (2007) analysed spontaneous narrations and cartoon retellings (Tweety and Sylvester)
 - Pear Story has human characters in landscape, with actions familiar to both GSL and AdaSL signers

Conclusion

- The visual-spatial affordances of the visual modality give rise to a high degree of similarity in event representation
 - Cross-linguistic investigation is important and reveals differences in sign languages in this domain
- Language contact between GSL and AdaSL may be causing change in AdaSL
 - Emergence of entity classifier system in AdaSL
- Education of AdaSL signers may influence the change in progress
 - Bilingual signers with awareness of knowledge of two different sign languages
 - Avoidance of entity classifiers in AdaSL use as structure belonging to GSL
 - No borrowings from GSL

Thank you!

- University of Brighton Doctoral College (PhD studentship award)
- School of Humanities, University of Brighton for funding fieldwork in Ghana
- All participants and research assistants from Adamorobe, Medie and Nsawam